M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011

LIQUEFACTION EVALUATIONS AT DOE SITES

Agenda

- Background
- Purpose and Objective
- Liquefaction Methods
- Site Evaluations
- Aging
- Conclusions

Liquefaction at DOE Sites

- Liquefaction evaluations are required at all DOE sites
- Methods have evolved over the years, but there is currently only one consensus methodology;
 - Youd et al., 2001
- Two other methods have emerged in the last few years;
 - Cetin et al., 2004
 - Idriss & Boulanger, 2008

- Youd et al., was the result of two workshops (NCEER/NSF) held in the late 1990s, culminating in a NCEER report and a ASCE publication in 2001. The method is widely used.
- Cetin et al., was the result of several doctoral dissertations and evaluations at University of California-Berkeley. It culminated in a ASCE publication in 2004.
- Idriss & Boulanger is the result of several MS & doctoral dissertations and evaluations at University of California-Davis. It culminated in an EERI Monograph in 2008.

- There is currently ongoing discussion in the profession regarding the Cetin et al., and Idriss & Boulanger methods.
- There is no such discussion regarding Youd et al.
- This presentation will present results from each for comparison.
- We will also present results from the SRS sitespecific methodology for comparison to Youd et al.

Liquefaction at DOE Sites

Purpose & Objectives

Purpose & Objectives

- The overall purpose is to present and show differences in each of the methodologies (Youd, Cetin, and Idriss & Boulanger) with respect to liquefaction factor of safety (FS)
- Comparisons will be shown of various parameters along with some discussion
- An added comparison will be made between the SRS site-specific and Youd methodologies to introduce a potential aging correction

Liquefaction at DOE Sites

Liquefaction Methods

Liquefaction Evaluation Methods

- Youd et al., 2001
 - Only consensus liquefaction method
 - NSF/NCEER Workshops in the 1990s
 - ASCE Geotechnical Journal October 2001
- Cetin et al., 2004
 - Re-evaluated some key case histories
 - ASCE Geotechnical Journal December 2004
- Idriss & Boulanger 2008
 - EERI Monograph 12 (MNO-12)
- SRS site-specific, 2008
 - Results from site-specific laboratory testing

- For this comparative evaluation the Seed & Idriss simplified equation will be used to calculate the earthquake demand.
- Each of the four methods will utilize the specific recommendations of each method for the various parameters (e.g., r_d , MSF, C_N , and K_σ).
- The evaluation with the 3 methods will utilize results from the standard penetration test (SPT), using the method-specific triggering relationship.
- The added comparison between the SRS and Youd methods will utilize the triggering relationships developed for the Cone Penetration Test (CPT).

Just a reminder, the Seed/Idriss simplified equation;

$$CSR = \frac{\tau_{ave}}{\sigma_{vo}} = 0.65 \cdot \frac{\sigma_{vo}}{\sigma_{vo}} \cdot \frac{a_{\text{max}}}{g} \cdot r_d$$

 The safety factor against liquefaction is defined as;

$$FS = \frac{CRR_{7.5}}{CSR} \cdot MSF \cdot K_{\sigma} \cdot K_{\alpha} \cdot K_{age}$$

Where;

- CSR is the earthquake demand
- CRR is the soil's capacity (resistance or strength)
- MSF the magnitude scaling factor
- K_{α} a correction for static shear stress (set to 1 for this comparison)
- K_σ a correction for overburden pressure
- K_{age} a correction for age (set to 1 for the comparison of the 3 methods)
- σ'_{vo} and σ_{vo} effective and total overburden pressures

Stress Reduction Coeff. (r_d)

- Cetin et al., lower at all depths shown
- Youd et al., varies with depth
- Idriss & Boulanger changes with earthquake M and depth
- Cetin et al., changes with depth, M, a_{max} and V_s
- Site response analysis eliminates these differences

MSF Comparison

- All three show similar trends
- All three are equal at $M_w = \frac{7.5}{}$
- At M_w > 6.5, differences are minimal

K_{σ} Correction

- Significant differences at shallow depths
- Values vary with overburden pressure and relative density (D_R)
- Most level-ground
 evaluations are at
 overburden pressures < 3.5
 to 4 tsf

SPT C_N Correction

- All relationships converge at σ'₀ = 1 tsf
- Relationships at σ'_o < 4 tsf are very similar
- At σ'_o > 6 tsf, differences
 can be important

SPT Triggering Relationships

Figure 7.1. Liquefaction triggering correlations for M = 7.5 and σ'_v = 1 atm developed by: (1) Seed et al. (1984), as modified by the NCEER/NSF Workshops (1997) and published in Youd et al. (2001); (2) Idriss and Boulanger (2004, 2008); and (3) Cetin et al. (2004)

SPT Triggering Relationships

Figure 7.1. Liquefaction triggering correlations for M = 7.5 and σ'_v = 1 atm developed by: (1) Seed et al. (1984), as modified by the NCEER/NSF Workshops (1997) and published in Youd et al. (2001); (2) Idriss and Boulanger (2004, 2008); and (3) Cetin et al. (2004)

Triggering Relationships

(most important difference)

- CRR at $(N_1)_{6ocs} = 5$
 - I/B:Y = 0.087/0.068 =1.28
 - C:Y = 0.048/0.068 = 0.71

- CRR at $(N_1)_{60cs} = 10$
 - I/B:Y = 0.118/0.115 = 1.03
 - C:Y = 0.072/0.115 = 0.63

- CRR at $(N_1)_{60cs} = 20$
 - I/B:Y = 0.205/0.226 = 0.91
 - C:Y = 0.156/0.226 = 0.69

- CRR at $(N_1)_{60cs} = 30$
 - I/B:Y = 0.48/0.6 = 0.8
 - C:Y = 0.338/0.6 = 0.56

Site Evaluations

Savannah River Site; F, Z, and K areas

SRS Generalized Profile

GWT varies by area; K - 55 ft, F - 80 ft, Z - 55 ft

SRS Seismic Demand

- Two earthquakes are utilized
 - Deterministic
 - $M_w = 7.2$, pga = 0.1g Charleston 50th (C50)
 - Probabilistic
 - M_w = 6.6, pga = 0.2g Design Basis Event (DBE)

SRS F-Area

$M_{w} = 6.6$, pga=0.2g

SRS FPDCBA6; M=7.2, pga=0.1g; M=6.6, pga=0.2g

SRS Z-Area

$M_{w} = 6.6$, pga=0.2g

SRS Z5B03; M=7.2, pga=0.1g; M=6.6, pga=0.2g

SRS K-Area

 $M_{w} = 6.6$, pga=0.2g

SRS K-1004A; M=7.2, pga=0.1g; M=6.6, pga=0.2g

SRS Results

- In general;
 - Cetin results in lower FS
 - Youd and Idriss/Boulanger are comparable
- Neglecting very high FS;
 - I/B is about 9% of Youd with a σ ~ 20% for the C50 (M_w = 7.2)
 - I/B is about 12% of Youd with a σ ~ 21% for the DBE (M_w = 6.6)
 - Cetin is about -44% of Youd with a σ ~ 24% for the C50 (M_w = 7.2)
 - Cetin is about -30% of Youd with a σ ~ 27% for the DBE (M_w = 6.6)

Site Evaluations

Paducah (PDGP)

Paducah Seismic Demand

 $M_w = 7.5$, pga = 0.48g

Paducah Generalized Profile

Elevation (ft, msl)	Layer	Description	N value (bpf)
400 385	Zone 1	Soft to Firm, Low to Medium Plastic Loess	
375	Zone 2	Medium Plastic Silt and Clay	
365	Zone 3	Poorly Graded Sand to a Well Graded Sand and Gravel	5 to 35+
355	Zone 4	Firm Interbedded Silts and Low Plasticity Clays	
345	Zone 5	Fine to Med Poorly Graded Sand with Some Gravel	5 to 35+
310	Zone 6	Low Plastic Silt and Clay with Laminations	

GWT assumed at 10 ft

PDGP; SB-01, 02, 03, 05, 06

Paducah

All Borings; M=7.5, pga=0.48g; FS < 3

PGDP Results

- In general, the results for each of the three methods are much closer, however;
 - Cetin results in lower FS
 - Youd and Idriss/Boulanger are comparable
- Overall;
 - Idriss/Boulanger is about -4% of Youd with a σ ~
 26% (16 of 22 [73%] analyses within ±20% of Youd)
 - Cetin is about -35% of Youd with a σ ~ 22% results
 (6 of 23 [26%] analyses within ±20% of Youd)

Aging Savannah River Site

Aging (SRS)

- Compare Youd et al., (2001) to the SRS methodology
- SRS methodology based on site-specific testing (CRR and K_σ); no attempt was made to correct for disturbance
- Most other parameters (C_N, MSF, r_d) follow recommendations of Youd
- Difference in computed FS can be attributed to aging
- Compare results for CPT in K-Area

Strength Gain vs Age

KC7

Aging (SRS)

- The results for CPT KC7 would indicate the following;
 - For the DBE $(M_w = 6.6, pga = 0.2g);$
 - Ratio of SRS/Youd ranges from about 1.1 to 2.4, with a mean ~ 1.4 (say ~ 1.1 to 1.2 from 55 to 80 ft)
 - For the C₅₀ ($M_w = 7.2$, pga = 0.1g);
 - Ratio of SRS/Youd ranges from about 1 to 2.3, with a mean ~ 1.3 (say ~ 1.1 to 1.2 from 55 to 85 ft)

Strength Gain vs Age; SRS

Conclusions

- For the evaluations shown;
 - Youd et al., is the only consensus liquefaction evaluation method and is still recommended for use
 - Site-specific correlations (SRS) can be extremely valuable (expensive and time consuming)
 - More than one tool (e.g., SPT, CPT) is recommended for liquefaction evaluations
 - Youd et al., and Idriss/Boulanger are comparable
 - In general, Cetin et al., results in significantly lower FS than either Youd et al., and Idriss/Boulanger
 - For SRS soils, an aging correction factor appears appropriate when using the Youd et al., relationship (which is for Holocene soils)
 - Upcoming workshops specifically targeting resolution between Idriss/Boulanger and Cetin et al., methods would be very helpful in resolving differences

